User manual METER
 SUR-W410

- Firmware: v.1.03 or higher
- Input type: universal
- Large-size, $4 \times 100 \mathrm{~mm}$ display

Read the user's manual carefully before starting to use the unit or software.
Producer reserves the right to implement changes without prior notice.

CONTENTS

1. BASIC REQUIREMENTS AND USER SAFETY 3
2. GENERAL CHARACTERISTICS 4
3. TECHNICAL DATA 5
4. DEVICE INSTALLATION 7
4.1. UNPACKING 8
4.2. ASSEMBLY. 8
4.3. CONNECTION METHOD 9
4.4. MAINTENANCE. 18
5. FRONT PANEL DESCRIPTION 18
6. PRINCIPLE OF OPERATION. 19
6.1. MEASUREMENT MODE. 19
6.1.1. Detection OF THE PEAK VALUES 20
6.2. CONTROL OF THE RELAY OUTPUTS 22
6.2.1. One threshold mode $\underline{2}$
6.2.2. Two thresholds mode 24
7. DEVICE PROGRAMMING 25
7.1. PROGRAMMING MENU. 25
7.2. PARAMETERS EDITION. $\underline{26}$
7.2.1. Numeric parameters (digit change mode) $\underline{26}$
7.2.2. Numeric parameters (slide change mode) 26
7.2.3. Switch parameters ("LIST" type) 27
7.3. MENU DESCRIPTION 27
7.3.1. "rEL1" menu 28
7.3.2. "bEEP" menu 30
7.3.3. "AL" menu. 30
7.3.4. "inPt" menu (common parameters) 30
7.3.5. "inPt" menu (parameters of temperature inputs) 31
7.3.6. "inPt" menu (parameters of current and voltage inputs) 31
7.3.7. "OutP" menu 33
7.3.8. "bri" parameter 35
7.3.9. "HOLd" menu. 35
7.3.11. "SECu" menu 36
7.3.12. "Scod" menu 36
7.3.13. "rS" menu 36
7.3.14. "Edit" parameter. 37
7.3.15. "dEFS" parameter. 37
7.3.16. "SErv" menu 38
7.4. MENU STRUCTURE 39
8. OVER-CURRENT PROTECTION 41
9. DISPLAYED VALUES CALCULATION. 41
9.1. ADDITIONAL CALCULATIONS (USED CONVERSION CHARACTERISTIC) 41
9.1.1. Linear characteristic 42
9.1.2. Square characteristic. 42
9.1.3. Square root characteristic 43
9.1.4. User defined characteristic. 43
9.2. EXAMPLES OF CALCULATIONS 44
10. THE MODBUS PROTOCOL HANDLING. 48
10.1. LIST OF REGISTERS 48
10.2. TRANSMISSION ERRORS DESCRIPTION. 52
10.3. EXAMPLES OF QUERY/ANSWER FRAMES. 52
11. DEFAULT AND USER'S SETTINGS LIST 55

Explanation of symbols used in the manual:

Q

- This symbol denotes especially important guidelines concerning the installation and operation of the device. Not complying with the guidelines denoted by this symbol may cause an accident, damage or equipment destruction.

IF THE DEVICE IS NOT USED ACCORDING TO THE MANUAL THE USER IS RESPONSIBLE FOR POSSIBLE DAMAGES.

(i)- This symbol denotes especially important characteristics of the unit. Read any information regarding this symbol carefully

1. BASIC REQUIREMENTS AND USER SAFETY

- The manufacturer is not responsible for any damages caused by inappropriate installation, not maintaining the proper environmental conditions and using the unit contrary to its assignment.
- Installation should be conducted by qualified personnel . During installation all available safety requirements should be considered. The fitter is responsible for executing the installation according to this manual, local safety and EMC regulations.
- If the device is equipped with PE connector, it should be connected to PE wire. Otherwise PE wire should be connected to GND connector.
- The unit must be properly set-up, according to the application. Incorrect configuration can cause defective operation, which can lead to unit damage or an accident.
- If in the case of a unit malfunction there is a risk of a serious threat to the safety of people or property additional, independent systems and solutions to prevent such a threat must be used.
- The unit uses dangerous voltage that can cause a lethal accident. The unit must be switched off and disconnected from the power supply prior to starting installation of troubleshooting (in the case of malfunction).
- Neighbouring and connected equipment must meet the appropriate standards and regulations concerning safety and be equipped with adequate overvoltage and interference filters.
- Do not attempt to disassemble, repair or modify the unit yourself. The unit has no user serviceable parts. Defective units must be disconnected and submitted for repairs at an authorized service centre.
- Do not use the unit in areas threatened with excessive shocks, vibrations, dust, humidity, corrosive gasses and oils.
- Do not use the unit in areas where there is risk of explosions.
- Do not use the unit in areas with significant temperature variations, exposure to condensation or ice.
- Do not use the unit in areas exposed to direct sunlight.
- Make sure that the ambient temperature (e.g. inside the control box) does not exceed the recommended values. In such cases forced cooling of the unit must be considered (e.g. by using a ventilator).

The unit is designed for operation in an industrial environment and must not be used in a household environment or similar.

2. GENERAL CHARACTERISTICS

The SUR-W410 meter is equipped with one current input ($0-20 \mathrm{~mA}$), two voltage inputs ($0-10 \mathrm{~V}$ and $0-150 \mathrm{mV}$), one RTD input ($\mathrm{Pt} 100 / 500 / 1000$) and one TC input (thermocouple: K, S, J, T, N, R, B, E). Temperature of cold ends is compensated automatically. RTD and TC inputs are fully linearised. It is allowed to use only one input at the same time. Input ranges are described in the next chapter. Result is showed on 4-digit LED display.

The device can be equipped with two or four relay (or OC type) outputs. The settings in the device menu are identical for both types of outputs. Optionally SUR-W410 can be equipped with active current output, passive isolated current output or active voltage output. Device SUR-W410 is equipped with RS-485 / Modbus RTU communication interface and sensor supply output. The meter can be ordered in two power supply versions.

The device has 4 buttons being used for main presets programming. The keyboard is mounted under transparent cover. To allow user to change presets without using the keyboard, an IR sensor is mounted.

Remote controller keyboard is equivalent to the device keyboard (Note, that remote controller is not a part of the SUR-W410 set - it is an additional equipment).

SUR-W410 can be used for controlling and regulation of processes need proportional and threshold control like: temperature processes (heating or cooling), valves controlling or other.

3. TECHNICAL DATA

Power supply voltage (depending on version) External fuse (required)
Power consumption
85...230...260V AC/DC; $50 \div 60 \mathrm{~Hz}$ (separated)
or 19...24...50V DC and 16...24... 35 V AC (separated) T-type, max. 2 A
max. 20 VA @ $85 \div 260 \mathrm{~V}$ AC/DC max. 20 VA @ 16V $\div 35 \mathrm{~V}$ AC max. 15 W @ $19 \mathrm{~V} \div 50 \mathrm{~V}$ DC
$0 \div 20 \mathrm{~mA}, 4 \div 20 \mathrm{~mA}$ overload protected, input current is limited to 50 mA (typically)
Current measurement accuracy $\pm 0.1 \%$ @ $25^{\circ} \mathrm{C}$; \pm one digit (for $0 \div 20 \mathrm{~mA}$ range)
Current input resistance
Accepted prolonged input overload
$<65 \Omega$ (typical 30Ω)
20\%

Voltage input (10V range) $\quad 0 \div 5 \mathrm{~V}, 1 \div 5 \mathrm{~V}, 0 \div 10 \mathrm{~V}, 2 \div 10 \mathrm{~V}$
Voltage measurement accuracy
Voltage input resistance
Accepted prolonged input overload

Voltage input (150mV range)
Voltage measurement accuracy
Voltage input resistance
Accepted prolonged input overload

RTD input (resistive)
Measurement range
Measurement accuracy
Measurement wires resistance
$\pm 0.1 \%$ @ $25^{\circ} \mathrm{C} ; \pm$ one digit (for $0 \div 10 \mathrm{~V}$ range)
$>100 \mathrm{~kW}$ (while maintaining correct polarization) 20\%
$0 \div 60 \mathrm{mV}, 0 \div 75 \mathrm{mV}, 0 \div 100 \mathrm{mV}, 0 \div 150 \mathrm{mV}$
$\pm 0.1 \%$ @ $25^{\circ} \mathrm{C} ; \pm$ one digit (for $0 \div 150 \mathrm{mV}$ range)
$>1,5 \mathrm{M} \Omega$
20\%

Pt 100, Pt 500,Pt 1000
$-100^{\circ} \mathrm{C} \div+600^{\circ} \mathrm{C}$
$\pm 0,1 \%$ @ $25^{\circ} \mathrm{C} ; \pm$ one digit
max. 20Ω (every wire)

Thermocouple input	$\mathrm{K}, \mathrm{S}, \mathrm{J}, \mathrm{T}, \mathrm{N}, \mathrm{R}, \mathrm{B}, \mathrm{E}$
Thermocouple input range	$\mathrm{K}:-200^{\circ} \mathrm{C} \div+1370^{\circ} \mathrm{C}$
	$\mathrm{S}:-50^{\circ} \mathrm{C} \div+1768^{\circ} \mathrm{C}$
	$\mathrm{J}:-210^{\circ} \mathrm{C} \div+1200^{\circ} \mathrm{C}$
	$\mathrm{T}:-200^{\circ} \mathrm{C} \div+400^{\circ} \mathrm{C}$
	$\mathrm{N}:-200^{\circ} \mathrm{C} \div+1300^{\circ} \mathrm{C}$
	$\mathrm{R}:-50^{\circ} \mathrm{C} \div+1768^{\circ} \mathrm{C}$
	$\mathrm{B}:+250^{\circ} \mathrm{C} \div+1820^{\circ} \mathrm{C}$
	$\mathrm{E}:-200^{\circ} \mathrm{C} \div+1000^{\circ} \mathrm{C}$
	$\mathrm{K}, \mathrm{J}, \mathrm{E}: \pm 0.1 \% @ 25^{\circ} \mathrm{C} ; \pm$ one digit
Measurement accuracy	$\mathrm{N}: \pm 0.2 \% @ 25^{\circ} \mathrm{C} ; \pm$ one digit
	$\mathrm{S}, \mathrm{T}, \mathrm{R}, \mathrm{B}: \pm 0.5 \% @ 25^{\circ} \mathrm{C} ; \pm$ one digit
Accuracy of cold ends temperature	
compensation	$\pm 1^{\circ} \mathrm{C}$

Sensor power supply output $24 \mathrm{~V}+5 \%,-10 \% / \max .100 \mathrm{~mA}$, stabilized

Relay output $\quad 2$ or $4 \mathrm{NO}, 1 \mathrm{~A} / 250 \mathrm{VAC}(\cos \varphi=1)$

OC-type output $\quad 2$ or $4 ; 30 \mathrm{~mA} / 30 \mathrm{VDC} / 100 \mathrm{~mW}$

Active current output range max. $0 \div 24 \mathrm{~mA}$

Load resistance max. 700Ω

Passive isolated current output range max. $2.8 \div 24 \mathrm{~mA}$
Supply voltage
Us $=9.5 \div 36 \mathrm{~V}$
Load resistance max.
(Us - 9.5V) / 24mA [k $]$

Active voltage output
range max. $0 \div 11 \mathrm{~V}$
Load resistance min.
2000Ω

Temperature stability

Display range

Communication interface
Baud rate
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$-999 \div 9999$, plus decimal point

RS-485, 8N1 and 8N2, Modbus RTU, not separated $1200 \mathrm{bit} / \mathrm{s} \div 115200 \mathrm{bit} / \mathrm{s}$

Display
(depending on version)
Data memory
Protection level
Housing type
Housing material

Housing dimensions
Operating temperature
(depending on version)
Storage temperature
(depending on version)
Humidity
Altitude
Screws tightening max. torque
Max. connection leads cross
section
Safety requirements

EMC

LED, 5 digits, 100 mm height, red, with 8-steps brightness regulation
non-volatile memory, EEPROM type
IP 30
Wall mounted
aluminium + methyl polimethacrylate
$578 \times 208 \times 102 \mathrm{~mm}$
T-type casing: $230 \times 140 \times 96.5 \mathrm{~mm}$
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
or $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
or $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
5 to 90% no condensation
up to 2000 meters above sea level
$0,5 \mathrm{Nm}$
$2,5 \mathrm{~mm}^{2}$
according to: EN 61010-1
installation category: II
pollution degree: 2
voltage in relation to ground: 300 V AC
insulation resistance: >20 M Ω
insulation strength between power supply and
input/output terminal: 1 min . @ 2300 V AC insulation strength between relays terminal:
1 min. @ 1350 V AC
according to: EN 61326-1

This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

4. DEVICE INSTALLATION

The unit has been designed and manufactured in a way assuring a high level of user safety and resistance to interference occurring in a typical industrial environment. In order to take full advantage of these characteristics installation of the unit must be conducted correctly and according to the local regulations.

- Read the basic safety requirements on page 3 prior to starting the installation.
- Ensure that the power supply network voltage corresponds to the nominal voltage stated on the unit's identification label.
- The load must correspond to the requirements listed in the technical data.
- All installation works must be conducted with a disconnected power supply.
- Protecting the power supply connections against unauthorized persons must be taken into consideration.

4.1. UNPACKING

After removing the unit from the protective packaging, check for transportation damage. Any transportation damage must be immediately reported to the carrier. Also, write down the unit serial number located on the housing and report the damage to the manufacturer.

Attached with the unit please find:

- user's manual,
- warranty,

4.2. ASSEMBLY

- Disconnect the power supply prior to starting assembly.
- During installation all available safety requirements should be considered.
- The mounting method must to preserve high breaking strength, at least 4 times the mass of the device.
- Check the connections are wired correctly prior to switching the unit on.

To install the device two holes must be prepared (distance like in Figure 4.1) with screws or hooks. The device should be installed using its handles placed on the top of housing.

Figure 4.1. Device and assembly dimensions

4.3. CONNECTION METHOD
 Caution

- Installation should be conducted by qualified personnel. During installation all available safety requirements should be considered. The fitter is responsible for executing the installation according to this manual, local safety and EMC regulations.
- The unit is not equipped with an internal fuse or power supply circuit breaker. Because of this an external time-delay cut-out fuse with a small nominal current value must be used (recommended bipolar, max. 2A) and a power supply circuitbreaker located near the unit. In the case of using a monopolar fuse it must be mounted on the phase cable (L).
- The power supply network cable diameter must be selected in such a way that in the case of a short circuit of the cable from the side of the unit the cable shall be protected against destruction with an electrical installation fuse.
- Wiring must meet appropriate standards and local regulations and laws.
- In order to secure against accidental short circuit the connection cables must be terminated with appropriate insulated cable tips.
- Tighten the clamping screws. The recommended tightening torque is 0.5 Nm . Loose screws can cause fire or defective operation. Over tightening can lead to damaging the connections inside the units and breaking the thread.
- In the case of the unit being fitted with separable clamps they should be inserted into appropriate connectors in the unit, even if they are not used for any connections.
- Unused terminals (marked as n.c.) must not be used for connecting any connecting cables (e.g. as bridges), because this can cause damage to the equipment or electric shock.
- If the unit is equipped with housing, covers and sealing to, protecting against water intrusion, pay special attention to their correct tightening or clamping. In the case of any doubt consider using additional preventive measures (covers, roofing, seals, etc.). Carelessly executed assembly can increase the risk of electric shock.
- After the installation is completed do not touch the unit's connections when it is switched on, because it carries the risk of electrical shock.

Due to possible significant interference in industrial installations appropriate measures assuring correct operation of the unit must be applied. To avoid the unit of improper indications keep recommendations listed below.

- Avoid running signal cables and transmission cables together with power supply cables and cables controlling inductive loads (e.g. contactors). Such cables should cross at a right angle.
- Contactor coils and inductive loads should be equipped with interference protection systems, e.g. RC-type.
- Use of screened signal cables is recommended. Signal cable screens should be connected to the earthing only at one of the ends of the screened cable.
- In the case of magnetically induced interference the use of twisted pair of signal cables is recommended. Twisted pair (best if shielded) must be used with RS-485 serial transmission connections.
- In the case of measurement or control signals are longer than 30 m or go outside of the building then additional safety circuits are required.
- In the case of interference from the power supply side the use of appropriate interference filters is recommended. Bear in mind that the connection between the filter and the unit should be as short as possible and the metal housing of the filter must be connected to the earth with the largest possible surface. The cables connected to the filter output must not be run with cables with interference (e.g. circuits controlling relays or contactors).

Connections of power supply voltage and measurement signals are executed using the screw connections on the back of the unit's housing.

Figure 4.2. Method of cable insulation replacing and cable terminals
All connections must be made while power supply is disconnected !

Figure 4.3. Terminals description (two relay outputs)

Figure 4.4. Terminals description (two OC-type outputs)

Figure 4.5. Terminals description (four relay outputs)

Figure 4.6. Terminals description (four OC-type outputs)

Figure 4.7. Terminals description (two relay, one OC-type and passive current outputs)

Figure 4.8. Terminals description (two relay, one OC-type and active current outputs)

Figure 4.9. Terminals description (two relay and active voltage outputs)

Figure 4.10. Connection of 2-wire current converters

Figure 4.11. Connection of 3-wire current converters

Figure 4.12. Connection of voltage converters

Temperature sensor can be connected to the device in typical 4-wire circuit (Figure 4.13a) or 3 -wire circuit (Figure 4.13b). Due to precision of measurement 4 -wire circuit is recommended.

(i)If 2 wire circuit is used, the resistance of wires should be as small as possible, to avoid of measurement errors. Measured value can be corrected (constant correction) using „toFS" parameter from menu „inPt". Due to low precision 2-wire connection is not recommended.

When 4-wires or 2-wires connection is used, the resistance of particular wires ($\mathrm{Ra} \div \mathrm{Rd}$) CAN BE DIFFERENT. When 3-wires connection is used, the resistance of particular wires ($\mathrm{Ra} \div \mathrm{Rd}$) MUST BE IDENTICAL to enable proper compensation of it's resistance. The resistance of particular wire should not be greater than 20Ω.
a)

$\mathrm{Ra}, \mathrm{Rb}, \mathrm{Rc}, \mathrm{Rd}$ can be different

$R_{a}=R_{c}=R_{d}$

R_{a}, R_{d} can be different

Figure 4.13. Connection of RTD sensors:
a) 4-wires circuit; b) 3-wires circuit; c) 2-wires circuit

The connection circuit should not be changed while unit is powered. While using TC, RTD or voltage inputs $(0-150 \mathrm{mV})$ the device is able to detect wire breaks. Wire
breaks are detected within about 2 seconds. For connectors number 19 and 20 of RTD input it may take up to about 7 seconds. During detection measurements will be incorrect. If wire break is detected "S.Err" (sensor error) message is displayed.

Figure 4.14. Connection of power supply and relays
Contacts of relay outputs are not equipped with spark suppressors. While use the relay outputs for switching of inductive loads (coils, contactors, power relays, electromagnets, motors etc.) it is required to use additional suppression circuit (typically capacitor 47nF/ min. 250VAC in series with 100R/5W resistor), connected in parallel to relay terminals or (better) directly on the load. In consequence of using the suppression circuit, the level of generated electromagnetic disturbances is lower, and the life of relay contacts rises.
a)

b)

Figure 4.15. Examples of suppression circuit connection: a) to relay terminals; b) to the inductive load

Figure 4.16. Example of OC-type outputs connection

Figure 4.17. Example of active current outputs connection (for device with active current output only)

Figure 4.18. Example of passive current outputs connection (for device with passive current output only)

Figure 4.19. Example of active voltage outputs connection (for device with active voltage output only)

4.4. MAINTENANCE

The unit does not have any internal replaceable or adjustable components available to the user. Pay attention to the ambient temperature in the room where the unit is operating. Excessively high temperatures cause faster ageing of the internal components and shorten the fault-free time of the unit's operation.
In cases where the unit gets dirty do not clean with solvents. For cleaning use warm water with small amount of detergent or in the case of more significant contamination ethyl or isopropyl alcohol.

Using any other agents can cause permanent damage to the housing.

Product marked with this symbol should not be placed in municipal waste. Please check local regulations for disposal of electronic products.

5. FRONT PANEL DESCRIPTION

Symbols and functions of push-buttons:

Symbol used in the manual: [ESC/MENU]
Functions:

- Enter to main menu (press and hold by at least 2 sec.),
- Exit the current level and Enter to previous menu (or measure mode),
- Cancel the changes made in parameter being edited.

Symbol used in the manual: [ENTER]
Functions:

- Start to edit the parameter,
- Enter to the sub-menu,
- Confirmation of changes made in parameter being edited.

Symbol used in the manual: [${ }^{\boldsymbol{\wedge}}$] [v]
Functions:

- Change of the present menu,
- Modification of the parameter value,
- Change of the display mode.

6. PRINCIPLE OF OPERATION

After turning the power supply on, device ID and software version are showed on the display, next the controller goes to the measurement mode.

6.1. MEASUREMENT MODE

In the measure mode, the measurement results, converted over selected characteristic, are displayed on the LED display. The measurement range equal to the nominal range is called: nominal measurement range, and the measurement range equal to the extended nominal range is called: permissible measurement range (Figure 6.1, 6.2).

(i)
For temperature inputs (TC and RTD) there is linear characteristic available only. For this kind of inputs nominal measurement range, and permissible measurement range are the same (no range extension available, Figure 6.3).
"Lo r" parameter
"Hi r" parameter

Figure 6.1. Definitions of measurement ranges in mode $4 \div 20 \mathrm{~mA}$
If the result of measurement exceeds the permissible measurement range, warning "-Hi-" or "-Lo-" is displayed rather than input signal, depending on exceeded value (see description of "Lo r" and "Hi r" parameters, paragraph "inPt" menu). The warning can be effect of measurement circuit malfunction. In that case "-Lo-" means shortcut and "-Hi-" means break of measurement circuit. If sensor failure will be detected (e.g. broken wires), then "S.Err" warning will be displayed.

Figure 6.2. Definitions of measurement ranges in mode $0 \div 150 \mathrm{mV}$

(i)If the measurement value do not exceeds permissible measurement range but displayed value exceeds range $-999 \div 9999$, the warning "-Ov-" is displayed rather than the calculated result.

Figure 6.3. Definitions of measurement ranges in mode Pt100
If the device is equipped with relay outputs, then in the measurement mode user can check main thresholds values. After pressing [${ }^{\wedge}$] or [v] button, name of the threshold (e.g. "rEL1") and his value will be displayed on the display in alternating mode. If [\wedge] or [\mathbf{v}] will be pressed in 5 sec again, the next threshold will be displayed, else the device comes back to the measurement mode. If a free access is enabled (see description of "SECu" menu), user can change the value of particular threshold pressing button [ENTER] (see: PARAMETERS EDITION).

All accessible parameters can be changed by entering the menu (see: DEVICE PROGRAMMING). Use the local keyboard or the remote controller to do it. (Note: all parameters can be remote changed via RS-485 interface).

Configuration of the device (via menu or RS-485 interface)
does not stop measures.

6.1.1. Detection OF THE PEAK VALUES

The SUR-W410 meter is equipped with peaks detection function. It can detect a peaks of the input signal and display their values. Presets connected with this function are placed in "HOLd" menu (see description of "HOLd" menu). The detection of the peak can be done if the measured signal raises and drops of value at least equal to parameter "PEA". Detected peaks are displayed during the time defined by parameter "timE". If a new peak will be detected while one is displayed, this new peak will be displayed and display time counter will be cleared (Figure 6.4).

If no peaks are detected while time "timE" elapses, device starts to show the current value of input signal again. If "HdiS" $=$ "HOLD" then setting parameter "timE" $=\mathbf{0} .0$ causes holding peak value until [ESC] button is pressed. If "HdiS" $=$ "rEAL" then value "timE" $=\mathbf{0 . 0}$ means no holding. Displaying peak value is signalized by flashing most right decimal point.

The relays/LEDs and analogue outputs can be controlled depend on the current value of input signal or the peak value (see "HOLd" menu).

Figure 6.4. Process of peaks detection

6.2. CONTROL OF THE RELAY OUTPUTS

The control of the object (measured signal) is realized via relay outputs.

(i)If device is not equipped with one or more relay outputs, menus referring to this relays are not available.

Modes of the control can be changed depend on the values of parameters "SEtP", "SEt2", "HYSt", "modE", "t on", "toFF", "unit" and "AL". Depend on "modE" parameter, relays can be not used or controlled over one or two thresholds values.

If one threshold is used (6.5) the relay can be turned on ("modE" = "on") or off ("modE" = "oFF") when the input signal value is contained in zone A. If two thresholds are used (6.6) the relay will be turned on when value of input signal is contained in zone \boldsymbol{A} ("modE" = "in") or zone B ("modE" = "out") and turned off if the signal is contained in the second one.

Figure 6.5. One threshold control of the relay outputs

Figure 6.6. Two threshold control of the relay outputs The relay outputs and LEDs (named \mathbf{R}) can be controlled depend on both - the current value and the peak value (when peak detection is active) of the input signal.

6.2.1. One threshold mode

6.7 presents the principle of relay outputs operation for one threshold mode for an example values of other parameters.

Description:
$\begin{array}{ll}\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D} & \text { - points where measured signal exceeds border values (expected value } \pm \text { allowed deviation) } \\ \mathbf{B}_{\text {ON }}, \mathbf{B}_{\text {ofF }}, \mathbf{D}_{\text {ON }}, \mathbf{D}_{\text {ofF }} \text { - relays state changes moments: (for " } \mathbf{t} \text { on" }>0, \text { "toFF" }>0 \text {) } \\ \mathbf{t}_{\mathbf{A}}, \mathbf{t}_{\mathrm{B}}, \mathbf{t}_{\mathbf{c}}, \mathbf{t}_{\mathbf{D}} & \text { - time periods while input signal is in zone } \mathrm{A} \text { or zone } \mathrm{B}\end{array}$
Figure 6.7. Principle of LED/relay output operation for one threshold mode

Parameter "SEtP" sets a threshold of the relay, and parameter "HYSt" sets a hysteresis of the relay (6.7a). The relay can change his state only when input value exceeds (over or under) border value and $t_{A}, t_{B}, t_{C}, t_{D}$ times (6.7) are bigger than the time defined by parameters "t on", "toFF" and "unit". Border values means values equal threshold+hysteresis and threshold-hysteresis respectively.

If "t on" and "toFF" parameters are set to " 0 ", then the relay state will be changed as soon as input value exceeds any of the border values (see points A and $C, 6.7 \mathbf{a}, \mathbf{b}, \mathbf{c}$).

If values of "t on" or/and "toFF" are positive, then relay state will be turned on if the input value exceeds the border values and stay bigger (or lower) during at least "t on" (see points $B_{\text {ON }}, D_{\text {ON }}, 6.7$ a, d, e). Similarly, the relay will be turned off if time "toFF" elapse since the input signal value exceeds any of the border values (see points $B_{\text {OFF }}, D_{\text {off }}, 6.7 a, d, e$).

If time $t_{A}, t_{B}, t_{c}, t_{D}$ (when input signal stay in zone \boldsymbol{A} or zone \boldsymbol{B}) are lower than parameters "t on" or "toFF", the relay will not change his state (see points A and C, $6.7 \mathrm{a}, \mathrm{d}, \mathrm{e}$).

The state of relay output while the input value exceeds the border values (points A, B, C, D) is described by parameter "modE". The relay can be turned on ("modE" = "on"), or
turned off ("modE" = "oFF") when input signal value is contained in zone \boldsymbol{A} (6.7a).
The parameter "AL" allow user to set the relay output behaviour in critical situations (e. g. input values exceeds permissible measurement range). User can select that the relays will be turned on, turned off,or not changed in critical situations.

All parameters connected with relay outputs are described in paragraph 7.3.1. "rEL1" menu.

6.2.2. Two thresholds mode

a)

Objaśnienie:
A, B, C, D, E - points where measured signal exceeds border values (expected value \pm allowed deviation)
$\mathrm{B}_{\text {on }}, \mathrm{B}_{\text {OFF }}, \mathrm{C}_{\text {on }}, \mathbf{C}_{\text {off }}, \mathrm{E}_{\text {on }}, \mathrm{E}_{\text {off }} \quad$ - relays state changes moments: (for "t on" >0, "toFF" >0)
$\mathbf{t}_{A}, \mathbf{t}_{\boldsymbol{B}}, \mathbf{t}_{\mathrm{c}}, \mathbf{t}_{\mathrm{D}}, \mathbf{t}_{\mathbf{E}} \quad$ - time periods while input signal is in zone A or zone B
Figure 6.8. Principle of LED/relay output operation for two thresholds mode
6.8 presents the principle of relay outputs operation for two thresholds mode for an example values of other parameters. In this mode parameter "SEt2" is accessible in common with "SEtP", this parameter describes a second threshold of the relay output. The parameters "HYSt", "modE", "t on", "toFF", "unit" and "AL" are connected with both "SEtP" and "SEt2" thresholds. While the controlling process, the relay output changes his state depends of both "SEtP" and "SEt2" thresholds in similar way as it was described in one threshold mode.

If two threshold mode is used, "modE" parameter defines state of the relay output when the input value occurs in a particular zone defined by border values of both thresholds. The relay can be turned on if the input value is contained in zone \boldsymbol{A} ("modE" = "in") or zone B ("modE" = "out") and turned off if it is contained in the second one (6.8).
i
The sequence of thresholds "SEtP" and "SEt2" can be set in any order, due to the control of relay outputs is done depend on difference between thresholds values (zone A) and outside of threshold values (zone B).

7. DEVICE PROGRAMMING

The device menu allow user to set all parameters connected to operation of measurement input, control modes, critical situations behaviour, communication via RS-485 and access settings. The meaning of the particular parameters is described in chapter 7.3. MENU DESCRIPTION.

Some of the parameters can be accessed without entering menu (quick view mode). After pressing [${ }^{\wedge}$] or [v] button, name of the threshold (e.g. "rEL1") and its value will be displayed on the display in alternating mode. If [^] or [v] will be pressed in 5 sec again, the next treshold will be displayed, else the device returns to the measurement mode. If a free access is enabled (see chapter 7.3.11. "SECu" menu), user can change the value of selected threshold by pressing [ENTER] button (see chapter 7.2. PARAMETERS EDITION).

(i)
If particular parameter has been changed and confirmed in quick view mode, its new value is displayed in alternating mode with parameter name by few seconds.
Confirmed changes may be checked or user can switch viewed parameter pressing [^] or [v] button.

7.1. PROGRAMMING MENU

To enter main menu (being in the measurement mode) user must to press and hold at least 2 sec . [ESC/MENU] button.

If the user password is defined (see parameter "Scod", menu "SECU"), operator have to enter correct one before proceeding to menu options. Entering of the passwords is similar to the edition of numeric parameters (see chapter 7.2. PARAMETERS EDITION), however presently editing digit is showed only on the display, other digits are replaced by "-" sign. After entering of last digit of the password first menu position will be displayed (if the password is correct) or warning "Err" in other case.

Pay attention when device parameters are being changed. If it is possible, turn off controlled installation (machine).

Functions of the buttons while sub-menu and parameters choice:

Selection of sub-menu or parameter for editing. Name of selected item (submenu or parameter) is displayed.

Operation of [ENTER] button depend on present menu position:
ENTER

- if the name of some sub-menu is displayed - enter this sub-menu; name of the first parameter (or next level sub-menu) is displayed,
- if the name of some parameter is displayed - enter the edition of this parameter; present value of the parameter is displayed.
[ESC/MENU] button allow user to exit present menu level and goes to upper level menu (or measurement mode).

(i)After about 1 min . since last use of the buttons, device exits the menu mode and returns to the measurement mode (only if no parameters are in editing mode).

7.2. PARAMETERS EDITION

To start edition of any parameter user should select name of desired one using [^^] [v] buttons and then press [ENTER].

7.2.1. Numeric parameters (digit change mode)

Numerical parameters are displayed as decimal numbers. The mode of its new value entering depends on chosen edit method (see parameter "Edit").

In mode "by digit" ("Edit"="dig") pressing one of the keys [^] or [v] causes change of current position (flashing digit) or the sign (+/-). Short pressing of the [ENTER] button causes change of the position (digit).

Press [ENTER] at least 2 seconds to accept the changes, after that question "SEt?" is displayed, and user must to confirm (or cancel) the changes. To confirm changes (and story it in EEPROM) press [ENTER] button shortly after "SEt?" is displayed. To cancel the changes press [ESC] button shortly after "SEt?" is displayed. After that device returns to the menu.

7.2.2. Numeric parameters (slide change mode)

In "slide change" mode ("Edit"="Slid"), buttons [^^] and [v] has different functions.
To increase edited value press (or press and hold) [^] button only. The increasing became quickest as long as button [^] is pressed. To slow down the increasing, button [v] can be used. If [\mathbf{v}] is pressed shortly (and button [${ }^{\wedge}$] is still pressed), increasing slow down for a moment only, if [\mathbf{v}] is pressed and held while button [^] is still pressed the increasing slow down and will be kept on lower speed.

To decrease edited value press (or press and hold) [v] button only. The decreasing became quickest as long as button [\mathbf{v}] is pressed. To slow down the decreasing, button [^] can be used. If [${ }^{\wedge}$] is pressed shortly (and button [v] is still pressed), decreasing slow down for a moment only, if [^] is pressed and held while button [v] is still pressed the decreasing slow down and will be kept on lower speed.

Press [ENTER] at least 2 seconds to accept the changes, after that question "Set?" is displayed, and user must to confirm (or cancel) the changes. To confirm changes (and story it in EEPROM) press [ENTER] button shortly after "SEt?" is displayed. To cancel the changes press [ESC] button shortly after "SEt?" is displayed. After that device returns to the menu.

7.2.3. Switch parameters ("LIST" type)

Switch parameters can be described as a sets of values (a lists) out of which only one of the options available on the list can be selected for the given parameter. Options of switching parameter are selected using [^^], [v] keys.

Short pressing of [ENTER] causes in displaying of the acknowledge question ("SEt?"). If key [ENTER] is pressed again, the changes are accepted, stored in EEPROM end the edition process finished. Pressing the key [ESC] after "SEt?" causes in cancelling of made changes and returning to menu.

Functions of buttons when editing numeric and switching parameters:

ENTER

ESC MENU

While editing numeric parameter:

- change of current (flashing) digit,
- slide change of value (acceleration, deceleration, direction change).

While editing switch parameter - selection of switch parameter.
If numerical parameter is being edited, a short press of [ENTER] button change edited position. A long press of [ENTER] button (at lest 2 sec .) causes of display a "SEt?" ask, which allow user to make sure if change of the parameter value is correct. If switch parameter is being edited, a short press of [ENTER] button causes of display a "SEt?" ask. When [ENTER] button is pressed again (while "SEt?" is displayed) the new value of the parameter is stored in EEPROM memory.

Pressing this button operator can cancel the changes done up to now (if they were not approved by [ENTER] button after the "SEt?" ask) and come back to menu

7.3. MENU DESCRIPTION

"--- -" - password checking. If some password different from "0000" is set, then every enter to main menu follows the entering of password. If entered password is correct then first menu position will be displayed else warning "Err", and unit returns to measurement mode.

Due to problem with direct displaying of " m " and " \mathbf{K} " letters, they are exchanged with special signs " $\overline{\boldsymbol{\pi}}$ " for " m " and " \boldsymbol{r} " for "K" respectively. However, in user manual letters " m " and " K " are used to make it more readable (example: "modE", "tc K").

7.3.1. "rEL1" menu

This menu allows to configure the operation mode of relays.
If there are few relay outputs available, then every output has its own configuration menu (e.g. menu "rEL2" for relay "R2"). Principle of the relays operation is described in paragraph CONTROL OF THE RELAY OUTPUTS.

- The relay outputs can be controlled depending on both - the current value and the peak value (when peak detection is active) of the input signal.
- If device is not equipped with one or more relay outputs, menus referring to this relays are not available.
"SEtP" - first threshold of the relay (range -999 $\div 9999$). Negative values can be input by selecting a "-" sign on first digit (to change value use [^] and [v] buttons). Threshold is the medium value of relay hysteresis.
"SEt2" - second threshold of the relay (range -999 $\div 9999$). Negative values can be input by selecting a "-" sign on first digit (to change value use [^] and [v] buttons). This threshold is accessible when "modE" parameter is set to "in" or "out" value. Threshold is the medium value of relay hysteresis.
"HYSt" - hysteresis of relay (range $0 \div 999$). Full hysteresis of the relay is equal to 2 times "HYSt" parameter. The relay state can change when an input signal is out of threshold-hysteresis to threshold+hysteresis zone.
(i)

Presented parameters should be set to ensure that "SEtP" + "HYSt", "SEt2" + "HYSt", "SEtP" - "HYSt" or "SEt2" - "HYSt" does not exceed the measure range. Additionally, in two threshold mode ("modE"= "in" or "out"), the hysteresis for both thresholds must not cover each other (in other case relay can't change his state).
"modE" - relay operation mode:
"noAC" - the relay is not active (permanent turned off)
"on" - one threshold mode, the relay is turned ON when input signal exceeds SEtP + HYSt value, and is turned off back when the input signal became lower than SEtP - HYSt,
"oFF" - one threshold mode, the relay is turned OFF when input signal exceeds SEtP + HYSt value, and is turned on back when the input signal became lower than SEtP - HYSt,
"in" - two threshold mode, the relay is turned ON when the input signal is bigger than "lower threshold + HYSt" and lower than "bigger threshold - HYSt", and turned off when the input signal is contained in the second zone. The bigger threshold means bigger one of "SEtP" and "SEt2" thresholds, the lower threshold" means lower one of "SEtP" and "SEt2" thresholds.
"out" - two threshold mode, relay is turned ON when the input value is bigger than "bigger threshold + HYSt" and lower than "lower threshold HYSt", and turned on when the input signal is contained in the second
zone. The bigger threshold means bigger one of "SEtP" and "SEt2" thresholds, the lower threshold means lower one of "SEtP" and "SEt2" thresholds.
"modb" - the relay is controlled via RS-485 interface, independently on the input signal.

- LEDs light when relays are closed, independently of relays' mode.
- When power supply fail, unit do not store relays state selected by RS-485 interface.
"t on" - turn on delay time, the relay is turned on with delay equal "t on" if the input value exceeds appropriate border value (defined with threshold and hysteresis), at least " t on" time. " t on" range $0 \div 99.9$, defined with 0.1 sec . resolution. Unit of this parameter is set by "unit" parameter.
"toFF" - turn off delay time, the relay is turned off with delay equal "toFF" if the input value exceeds appropriate border value (defined with threshold and hysteresis), at least "toFF" time. "toFF" range $0 \div 99.9$, defined with 0.1 sec . resolution. Unit of this parameter is set by "unit" parameter.

If time when the input signal exceeds some border value is shorter than "t on" or "toFF" time, the relay do not change its state (see paragraph: CONTROL OF THE RELAY OUTPUTS).
"unit" - unit of time for "t on" and "toFF" parameters. Can be set on one of two values:
"min" - minutes,
"SEC" - seconds.
"AL" - this parameter defines the relay reaction when some critical situations occurs:
"noCH" - relay do not change his state,
"on" - relay will be turned on,
"oFF" - relay will be turned off.
If parameter "modE" is set to "on", "oFF", "in" or "Out" the "critical situation" means that allowable measurement range is exceeded.
If parameter "modE" is set to "modb", the "critical situation" means communication delay (when no data is received) longer than "mbtO" parameter (see description: "rS" menu).

- If option "noCH" is selected for "AL" parameter, behaviour of the relay may depend on "FiLt" parameter in some cases. If "FiLt" is set to big value and the input signal drops, result value of the measure will change slow, causes of turning on or off relay due to thresholds values. The critical situation is slowly detected, so it is impossible to predict the relay state in that situations.
- If parameter "AL" = "on", the relay will be turned on in the critical situations, even if his parameter "modE" = "noAC".

7.3.2. "bEEP" menu

The menu is available only in devices with relay outputs. It contains options fo the acoustic signal:
"AL" - if this parameter is set to "on", any critical situation causes acoustic signal
"r1" - if this parameter is set to "on", activation of relay R1 causes acoustic signal "r2" - if this parameter is set to "on", activation of relay R2 causes acoustic signal
"r3" - if this parameter is set to "on", activation of relay R3 causes acoustic signal
"r4" - if this parameter is set to "on", activation of relay R4 causes acoustic signal

7.3.3. "AL" menu

The menu is available only in devices without relay outputs. If this option is set to "on", any critical situation causes acoustic signal.

(i)
Acoustic signal (turned on by e.g. relay) can be turned off by pressing of any button

7.3.4. "inPt" menu (common parameters)

This menu presets the measurement input:
"tYPE" - type of the input / sensor. This parameter can be set to values:

$" 0-20 "$	- current input - range $0 . .20 \mathrm{~mA}$,
$" 4-20 "$	- current input - range $4 . .20 \mathrm{~mA}$,
$" 0-5 "$	- voltage input - range $0 . .5 \mathrm{~V}$,
$" 1-5 "$	- voltage input - range $1 . .5 \mathrm{~V}$,
$" 0-10 "$	- voltage input - range $0 . .10 \mathrm{~V}$,
$" 2-10 "$	- voltage input - range $2 . .10 \mathrm{~V}$,
$" 60 "$	- voltage input - range $0 . .60 \mathrm{mV}$,
$" 75 "$	- voltage input - range $0 . .75 \mathrm{mV}$,
$" 100 "$	- voltage input - range $0 . .100 \mathrm{mV}$,
$" 150 "$	- voltage input - range $0 . .150 \mathrm{mV}$,

"Pt 1" - Pt 100 input,
"Pt 5" - Pt 500 input,
"Pt10" - Pt 1000 input,
"tc \boldsymbol{k} " - thermocouple input, type K,
"tc S" - thermocouple input, type S,
"tc J" - thermocouple input, type J,
"tc \boldsymbol{t} " - thermocouple input, type T,
"tc n" - thermocouple input, type N ,
"tc r " - thermocouple input, type R,
"tc b" - thermocouple input, type B,
"tc E " - thermocouple input, type E.
For current and voltage inputs displayed values are defined by parameters "Lo C","Hi C" (or by user defined characteristic points) and parameter "Pnt".
"FiLt" - option allows to change the filtration time constant. Expressed in seconds. Acceptable values range from 0 (no filtration) to 255.

7.3.5. "inPt" menu (parameters of temperature inputs)

"Conn" - connection method of RTD input. This parameter can be set to values:
"4 in" - 4-wire method,
"3 in" - 3-wire method,
"2 in" - 2-wire method.
"toFS" - offset expressed in ${ }^{\circ} \mathrm{C}$, range $\pm 9.9^{\circ} \mathrm{C}$ (for RTD input) or $\pm 99^{\circ} \mathrm{C}$ (for TC input). This parameter allows shifting of measurement scale, and express value added to calculated (measured) result.
(i) The offsetting of a scale is realised independently of cold ends automatic compensation.

7.3.6. "inPt" menu (parameters of current and voltage inputs)

"CHAr" - this option presets type of the conversion characteristic, and can be set to:
$\left.\begin{array}{ll}\text { "Lin" } & \text { - linear } \\ \text { "Sqr" } & \text { - square }\end{array}\right\} \begin{aligned} & \text { When one of those characteristics is chosen display } \\ & \text { range is defined by "Lo C" and "Hi C". }\end{aligned}$ "Sqrt" - square root $\}$ range is defined by "Lo C" and "Hi C".
"USEr" - user defined characteristic. Maximal length 20 points. Every point is defined by user. Adding, Editing and Deleting of points is done by options „AddP", „EdtP", „dELP" („InPt" menu) respectively.

1If user defined characteristic is selected, and if number of defined points is lower than 2 then warning "Errc" is displayed in measurement mode.

The process of displayed result calculation is described in details in DISPLAY VALUES CALCULATION paragraph.
"Pnt" - decimal point position. It can be set to one of:
" 0", " 0.0", " 0.00", "0.000"
Decimal point position is changed by [${ }^{\wedge}$], [\mathbf{v}] buttons.
"Lo C" These parameters describe the values displayed for minimum and maximum input current. For example, if input type is set to $4-20 \mathrm{~mA}$ "Lo C " parameter defines the value displayed when input current is equal 4 mA , and " Hi C " parameter defines the value displayed for 20 mA of input current. Available range for these parameters: -999 $\div 9999$. Negative values can be set by entering '-' sign on the first position (by use of [^$\left.{ }^{\wedge}\right]$, [v] buttons).

(i)
If user defined characteristic is selected (parameter "CHAr" = "USEr") the parameters "Lo C" and „Hi C" are not available for modification, due to their values are calculated from defined characteristic.
"AddP" - this menu allow user to add single point to the user defined characteristic.
After selection of this option device waits for " \mathbf{X} " and " Y " coordinates of new point. Modification of the coordinates is done accordingly to numerical parameters edition. Coordinate " \mathbf{X} " defines the percentage ratio of input current to selected current range. The "X" range: -99,9 $\div 199,9$. Coordinate "Y" defines displayed value for particular „X" value. The „Y" value can be changed in range: -999 $\div 9999$, decimal point position depend on "Pnt" parameter (menu "inPt ").

- User can not enter two points with the same value of " \mathbf{X} " coordinate. If user trays to do it, "Err" warning is displayed. To modify any defined point use "EdtP" option.
- To distinguish " \mathbf{X} " and " \mathbf{Y} " coordinates, if " \mathbf{X} " coordinate is displayed an additional decimal point on utmost right position is displayed.
- If user defined characteristic is selected, and if number of defined points is lower than 2 then warning "Errc" is displayed in measurement mode.
- this option allows user to delete any of the points of the user defined characteristic. After selection current number of points of the user defined characteristic is displayed for about approx. 1.5 sec . After that device waits for selection of point being deleted (by [^^], [v] buttons). The short pressing of [ENTER] button causes by switching between \mathbf{X} and \mathbf{Y} value of the displayed point. The long press (press and hold at least 2 sec) of [ENTER] button causes by displaying „dEL?" ask. If [ENTER] button is pressed again, current point is deleted and new updated number of points of the user defined characteristic is displayed.
"EdtP" - this option allows user to modify of particular point of the user defined characteristic. After selection current number of points of the user defined characteristic is displayed for about approx. 1.5 sec . After that device waits for selection of point being edited (by [^], [v] buttons). The short pressing of [ENTER] button causes by switching between \mathbf{X} and \mathbf{Y} value of the displayed point. The long press (press and hold at least 2 sec) of [ENTER] button causes by entering to edit the selected coordinate of the point. Modification of the coordinates is done accordingly to numerical parameters edition.
"AddP", "dELP" and "EdtP" options are available only if the user defined characteristic is used (it means when parameter "CHAr" = "USEr").

[^0]The permissible range allow user to exceed the nominal range of input signal.

If input value is contained in the permissible range a proper result is displayed. If input signal exceeds this range (defined by "Lo r" and "Hi r"), "-Lo-" or "-$\mathrm{Hi}-$ " warning is displayed depend on input signal value.

Figure 7.1 Example of definition of permissible range of input signal "Lo r" and "Hi r" parameters ("4-20" mode)
The "Lo r " parameter is important if input is set to "4-20", "1-5" or "2-10" mode only, and determines lower border of the permissible range. In the other cases (for current and voltage ranges), lower border of the permissible range is always 0 .
For example if input is set to "4-20" mode, then lower border is calculated due to expression: $\quad I_{\text {min }}=4 \mathrm{~mA}-4 \mathrm{~mA} \times$ "Lo r " \%.
The "Lo r" value can be set from 0 to 99.9%.
Parameter "Hi r" determines the upper border of the permissible range accordingly to the expression (for all modes).
For example if input is set to "4-20" mode, then upper border is calculated due to expression: $\quad I_{\max }=20 \mathrm{~mA}+20 \mathrm{~mA} \times$ "Hi r" \%.
The value of "Hi r" can be set from 0 to 19.9\%
In example no 1 of the DISPLAY VALUES CALCULATION paragraph the procedure of the permissible input range determining is presented in details.

(i)If the measurement value do not exceeds permissible measurement range but displayed value exceeds range $-999 \div 9999$, the warning "-Ov-" is displayed rather than the calculated result.

7.3.7. "OutP" menu

This menu contains parameters of analogue output control. Menu is available if the device is equipped witch analogue output.

Analogue output can be controlled depend on both present measured value and peak value (if peak detection is enabled).
"Omod" - analogue output mode. Depending on version of the device there are following options:

For active current output:
"oFF" - current output disabled,

"0-20"	- current output enabled with $0 \div 20 \mathrm{~mA}$ mode,
"4-20"	- current output enabled with $4 \div 20 \mathrm{~mA}$ mode,
"modb"	- current output controlled via RS-485 interface.

For passive current output:
"oFF" - current output disabled,
"4-20" - current output enabled with $4 \div 20 \mathrm{~mA}$ mode,
"modb" - current output controlled via RS-485 interface.
For active voltage output:
"oFF" - voltage output disabled,
"0-5" - voltage output enabled with $0 \div 5 \mathrm{~V}$ mode,
"1-5" - voltage output enabled with $1 \div 5 \mathrm{~V}$ mode,
"0-10" - voltage output enabled with $0 \div 10 \mathrm{~V}$ mode,
"2-10" - voltage output enabled with $2 \div 10 \mathrm{~V}$ mode,
"modb" - voltage output controlled via RS-485 interface.
"OUtL" - this parameter determines the input value for which the output signal is minimal (depend of output mode "Omod").
"OUtH" - this parameter determines the input value for which the output signal is maximal (depend of output mode „Omod").

The analogue output value is calculated due to formula given below:

$$
O u t=\frac{W-" O U t L^{\prime \prime}}{\prime O U t H^{\prime \prime}-" O U t L^{\prime \prime}} \times(B-A)+A
$$

where: $\quad \mathbf{W}$ - displayed value, Out - analogue output value, B - higher range limit ($20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$), A - lower range limit ($0 \mathrm{~mA} / 4 \mathrm{~mA} / 0 \mathrm{~V} / 1 \mathrm{~V} / 2 \mathrm{v}$),
"OutL" parameter can be greater than "OutH". In this case the conversion characteristic is reversed, it means that if input value raises the output value falls.
"Lo r", "Hi r" - this parameters define the output value range. If calculated output value Out exceeds defined range then analogue output generates signal equal to upper or lower border of the defined range. These parameters defines the percentage extension of nominal analogue range (with $0,1 \%$ resolution).

Parameter "Lo r" defines lower border of the range due to formula:
Out $_{\text {min }}=$ A - (A \times "Lo r" \%), where:
\mathbf{A} - lower signal value range limit.
This parameter can be set from 0 to 99.9% (for active current output and active voltage output) or from 0 to 29.9% (for passive current output).

Parameter "Hi r" defines higher border of the range due to formula:
Out $_{\text {max }}=\mathbf{B}+(\mathbf{B} \times$ "Hi r" \%), where:
B - higher signal value range limit.

This parameter can be set from 0 to 19.9\% (for active and passive current output) or from 0 to 9.9% (for active voltage output).

In example on page 46 of the DISPLAY VALUES CALCULATION paragraph the procedure of the analogue outputs determining is presented in details.
"AL" - this parameter determines the behaviour of analogue output if any critical situation occurs. According to version of the device, this parameter can be set:

For active current output:
"noCH" - current will not change,
"22.1" - current will be set to 22.1 mA ,
"3.4" - current will be set to 3.4 mA ,
" 0.0 " - current will be set to 0 mA .
For passive current output:
"noCH" - current will not change,
"22.1" - current will be set to 22.1 mA ,
"3.4" - current will be set to 3.4 mA ,
For active voltage output:
"noCH" - voltage will not change,
"11.0" - voltage will be set to 11 V ,
"5.5" - voltage will be set to 5.5 V ,
"1.2" - voltage will be set to 1.2 V .
"0.6" - voltage will be set to 0.6 V ,
"0.0" - voltage will be set to 0 V .
When the critical situation goes, the output signal will be set to value calculated due to formulas given above.

7.3.8. "bri" parameter

This parameter allows the user to set brightness of the LED display, brightness can be set to conventional values from 1 to 8.

7.3.9. 'HOLd" menu

This menu contains parameters connected with peak detection function. See also full description of the peak detection function in paragraph: DETECTION OF THE PEAK VALUES.
"modE" - the type of detected changes of the input signal, can be set to values:
"norm" - peaks: peak and next drop of the input signal of value equal at least "PEA",
"inv" - drops: drop and next peak of the input signal of value equal at least "PEA",
"PEA" - minimal detected signal change classified as peak or drop (see Figure 6.4),
"timE" - maximum time of displaying of the peak (drop) value, can be set from 0.0 to 19.9 sec , with 0.1 sec . resolution. If "HdiS"="HOLD" then setting parameter "timE"=0.0
causes holding peak value until [ESC] button is pressed. If „HdiS"="rEAL" then value "timE" $=0.0$ means no holding,
"HdiS" - type of displayed values.
"rEAL" - current value is displayed,
"HOLd" - peak (drop) value is displayed,
"H r1" \div "H r4"- relay outputs ($\mathrm{R} 1 \div \mathrm{R} 4$) operation mode (only for devices with relay outputs):
"rEAL" - relay operates depend on the current value,
"HOLd" - relay operates depend on the peak (drop) value.
"HOUt" - current output operation mode:
"rEAL" - current output operates depend on the current value,
"HOLd" - current output operates depend on the peak (drop) value.

7.3.11. "SECu" menu

This menu contains presets connected with availability of other parameters. This menu is available only in devices with relay outputs.
"Scod" - user password (4-digits number). If this parameter is set at value " 0000 ", user password is turned off.

If the user do not remember his password, the access to the menu is possible by the "one-use password". To get this password please contact with Marketing Division. "One-use password" can be used only one time, after that it is destroyed. Entering this password causes in clearing of user password, it means sets the user password to ",0000".

(i)The "one-use password" can be used ONE TIME ONLY, it is impossible to use it again! The "one-use password" can be restored by Service Division only.
"A r1 \div A r4" - this option permits user ("on") or prohibits ("oFF") to modify the thresholds of the relays $\mathrm{R} 1 \div \mathrm{R} 4$ without knowledge about user password.

7.3.12. "Scod" menu

The menu is available only in devices without relay outputs. The operation of the "Scod" option is explained above.

7.3.13. "rS" menu

This menu is connected with RS-485 interface, and sets his properties.

[^1]possible values: "1.2", "2.4", "4.8", "9.6", "19.2", "38.4", "57.6", "115.2", which respond to the baud rates of 1200, 2400, 4800, 9600, 19200, 38400, 57600 and $115200 \mathrm{bit} / \mathrm{s}$ respectively,
"mbAc" - this parameter sets the access to the configuration registers of the device. Possible values:
"on" - configuration registers can be set via RS-485 interface,
"oFF" - configuration registers can not be set via RS-485 interface.

- The access to registers no 04h and 05h cant be denied by "mbAc" parameter (see chapter 10.1List of registers).
"mbtO" - this parameter defines maximal time (sec) between following frames received by the device. If the delay will be greater than the value of "mbtO" parameter, the relays and analogue outputs which are controlled via RS-485 interface, will set to alert state (see "OUtP" menu, and "1 rEL" menu description). Parameter "mbtO" can be set to values from 0 to 99 seconds. The value 0 means that the time will be not controlled,
"rESP" - this parameter defines minimal (additional) delay between the Modbus message and the answer of the device (received and sent via RS-485 interface). This additional delay allows the device to work with poor RS-converters which do not works properly on baud rates higher than 19200. This parameter can be set to one of values:

(1) In the most cases parameter "rESP" should be set to "Std" (no additional delay). Unfortunately for some third party RS-converters "rESP" should be adjusted experimentally. Table 7.1 contains most frequently used values.

"bAud" parameter	"38.4"	"57.6"	$" 115.2 "$
"rESP" parameter	" $10 \mathrm{c} "$	$" 20 \mathrm{c} "$	$" 50 \mathrm{c} "$

Tab.7.1. Settings of "rESP" parameter

7.3.14. "Edit" parameter

This parameter allows to change the edition mode of numerical parameters.
"dig" - "by digit" change mode,
"Slid" - slide change mode.

7.3.15. "dEFS" parameter

This setting allows to restore the factory settings of the device. To get the access to this option special password is required: „5465", next the device displays acknowledge question
„SEt?". Press [ENTER] to acknowledge the restoring of factory settings or [ESC] to cancel.

7.3.16. "SErv" menu

This menu contains the parameters for authorized service only. To enter this menu proper service password must be entered. Improper settings can causes of damage of the device.

7.4. MENU STRUCTURE

8. OVER-CURRENT PROTECTION

The current input of the device is equipped with over-current protection circuit. This circuit protects the standard resistor to damage. Maximum input current is set to 50 mA (typical).
When temperature of the standard resistor falls, the protection circuit will turn off himself automatically, and the device will measure the input current again. Due to thermal phenomenon in the standard resistor, precision of the measurement may be lower, during few minutes (up to the standard resistor temperature will falls to the environment temperature).

9. DISPLAYED VALUES CALCULATION

For simplicity of examples it's assumed that current input is selected, and all calculations are related to this input. When voltage input is selected calculations are similar (be sure of particular ranges and units).

The first step to compute the result of measure is the calculation of the normalized result (it means result of 0-1 range). To do it, the begin of the input range (0 mA for $0-20 \mathrm{~mA}$ range, and 4 mA for $4-20 \mathrm{~mA}$ range) must be subtracted from measured value. Next, received result must be divided by the width of the input range (it means 20 mA for $0-20 \mathrm{~mA}$ range, and 16 mA for $4-20 \mathrm{~mA}$ range). So normalized result can be expressed by expressions:

$$
\begin{array}{lll}
I_{n}=\frac{I_{i n p .}-4}{16} & \text { for } & 4 \div 20 m A \\
\text { range } \\
I_{n}=\frac{I_{i n p .}}{20} & \text { for } & 0 \div 20 m A \\
\text { range }
\end{array}
$$

where $l_{\text {inp. }}$. Means input current (in mA), and I_{n} normalized result.
If measured value exceeds the nominal input range ($0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$), and do not exceed the permissible input range, then received normalized I_{n} result will exceed $0-1$ range, e.g. input range $4-20 \mathrm{~mA}$, input current $=3 \mathrm{~mA}$ - the normalized result is equal $-0,0625$, and for input current $=22 \mathrm{~mA}$, the normalized result is equal 1,125 . In such cases presented expressions are still correct.

9.1. ADDITIONAL CALCULATIONS (USED CONVERSION CHARACTERISTIC)

The manner of the additional computation of the displayed result depends on selected conversion characteristic. All presented charts are connected with the input range 4-20 mA.

9.1.1. Linear characteristic

The normalized result is converted by fixed coefficients determined by "Lo C" and "Hi C" parameters (when the normalized results is equal 0 , then value "Lo \mathbf{C} " is displayed, and when the normalized results is equal 1 , then value " Hi C " is displayed). Expression presented below shows the manner of result calculation:

$$
W=I_{n} \times\left(" H i C^{\prime \prime}-" L o C^{\prime \prime}\right)+{ }^{\prime \prime} L o C^{\prime \prime}
$$

where W means the displayed value.

(i)The value of the "Lo C" parameter can be higher than the value of "HiC" parameter. In such a case, for an increasing value of input current the displayed value decreases.

Figure. 9.1 Normal (,Lo C" < "Hi C) and inverted („Lo C"> "Hi C) characteristic

9.1.2. Square characteristic

The normalized result is squared and further conversion is done as for linear characteristic. Conversion is made accordingly with the expression:

$$
W=I_{n}^{2} \times\left({ }^{\prime \prime H i} C^{\prime \prime}-{ }^{\prime \prime} L o C^{\prime \prime}\right)+{ }^{\prime \prime} L o C^{\prime \prime}
$$

where W means the displayed value.

Figure. 9.2 Normal („Lo C" < "Hi C) and inverted („Lo C"> "Hi C) characteristic

9.1.3. Square root characteristic

The normalized result is rooted and further conversion is done as for linear characteristic. Conversion is made accordingly with the expression:

$$
W=\sqrt{I_{n}} \times\left(" H i C^{\prime \prime}-" L o C^{\prime \prime}\right)+{ }^{\prime \prime} L o C^{\prime \prime},
$$

where W means the displayed value.
Showed above expression is not valid when normalized result is negative. It is possible for $4-20$ mode only. In this case ($\mathrm{I}_{\mathrm{n}}<0$) the displayed result is equal "Lo C" (see graphs below).

Figure. 9.3 Normal (,Lo C" < "Hi C) and inverted (,Lo C" > "Hi C) characteristic

9.1.4. User defined characteristic

User defined characteristic is defined as set of X-Y points. Number of the points is variable and may be set from 2 to 20 points which make linear segments (see graph and see Menu "inPt").
Due to the normalized result I_{n}, the device computes specific segment, e.g. for characteristic from figure below, and $I_{n}=0,65$ the segment between points $X=" 50.0$." and $X=$ "70.0." will be chosen.
Let's mark those points as PL (point low) and PH (point high) - in this example PL= "50.0," and PH = "70.0.", and the normalized result I_{n} for the point $P L$ as I_{p} (in this example $I_{p}=I_{n}(P L)$ $=0,5)$. The displayed result is calculated accordingly to the expression:

$$
W=\left(I_{n}-I_{p}\right) \times \frac{[Y(P H)-Y(P L)]}{[X(P H)-X(P L)]} \times 100+Y(P L)
$$

where $Y(P H), X(P H), Y(P L), X(P L)$ mean values of X and Y coordinates of PH and PL points. utmost segment, defined by two next points, is used for calculations. If characteristic from figure below is used, and if $I_{n}>1$ then segment defined by points $X(P L)=" 90.0 . ", X(P H)=" 100.0 . "$ will be used.

Figure. 9.4 Example of user defined characteristic

9.2. EXAMPLES OF CALCULATIONS

Example 1: Selection of the permissible input range ("4-20" mode)

If in "4-20" mode the user sets "Lo r" = 20,0\% and "Hi r" = 10,0\%, then permissible input currents range will be equal: $3,2 \mathrm{~mA} \div 22 \mathrm{~mA}$. Lower border of the range is the result of calculations: $4 \mathrm{~mA}-4 \mathrm{~mA} \times 20 \%$, and the higher : $20 \mathrm{~mA}+20 \mathrm{~mA} \times 10 \%$.

Example 2: The normalized I_{n} result calculation

Let the input mode $=4-20 \mathrm{~mA}$. The normalized I_{n} result is calculated accordingly to the expression on page 41, so if $\mathrm{l}_{\mathrm{in}}=10 \mathrm{~mA}$ then $10 \mathrm{~mA}-4 \mathrm{~mA}=6 \mathrm{~mA}$, and this result should be divided by the width of input range (16 mA). Finally the normalized result: $I_{n}=6 / 16=0,375$.

In case when input current exceeds nominal measurement range, calculations are similar. For example if input current is equal $2,5 \mathrm{~mA}$ then $I_{n}=(2,5-4) / 16 \cong-0,0938$, and if input current is equal $20,5 \mathrm{~mA}$ then $\mathrm{I}_{\mathrm{n}}=(20,5-4) / 16 \cong 1,0313$.

Example 3: The linear characteristic

Let the input mode $=4-20 \mathrm{~mA}$, and parameters "Lo C" and "Hi C" equal to -300 and 1200 respectively. The calculations will be done for three different input currents from example 2.
a) $I_{\text {in }}=10 \mathrm{~mA}$ and $I_{n}=0,375$

Accordingly to expression on page 42 for linear characteristic:
$0,375 \times[1200-(-300)] \cong 562$ and next, the "Lo C" value is added to the result, so the displayed value:
$W \cong 562+(-300)=262$
b) $I_{\text {in }}=2,5 \mathrm{~mA}$ and $I_{n}=-0,0938$.
$W \cong-441$.
c) $I_{\text {in }}=20,5 \mathrm{~mA}$ and $I_{n}=1,0313$.
$W \cong 1247$.

Example 4: The square characteristic

Let the input mode $=4-20 \mathrm{~mA}$, and parameters "Lo C" and "HiC" equal to -300 and 1200 respectively. The calculations will be done for there different input currents from example 2.
a) $I_{\text {in }}=10 \mathrm{~mA}$ and $I_{n}=0,375$

Accordingly to expression on page 42 for square characteristic: $(0,375)^{2} \times[1200-(-300)] \cong$ 211.
and next, the "Lo C" value is added to the result, so the displayed value:
$W \cong 211+(-300)=-89$
b) $I_{\text {in }}=2,5 \mathrm{~mA}$ and $I_{n}=-0,0938$.
$W \cong-287$.
c) $I_{\text {in }}=20,5 \mathrm{~mA}$ and $I_{n}=1,0313$.
$W \cong 1295$.

Example 5: The square root characteristic

Let the input mode $=4-20 \mathrm{~mA}$, and parameters "Lo C" and "Hi C" equal to -300 and 1200 respectively. The calculations will be done for there different input currents from example 2.
a) $I_{\text {in }}=10 \mathrm{~mA}$ and $I_{n}=0,375$

Accordingly to expression on page 43 for square root characteristic:

$$
\sqrt{0,375} \times[1200-(-300)] \cong 919 .
$$

and next, the "Lo C" value is added to the result, so the displayed value:
$W \cong 919+(-300)=619$
b) $I_{\text {in }}=2,5 \mathrm{~mA}$ and $I_{n}=-0,0938$, normalized result is negative, so the displayed value is equal to "Lo C" parameter: $W \cong$ "Lo C" = -300 .
c) $I_{\text {in }}=20,5 \mathrm{~mA}$ and $I_{n}=1,0313$.

$$
W \cong 1223
$$

Example 6: The user defined characteristic

Let the input mode $=4-20 \mathrm{~mA}$, and the user selected the 10 segment characteristic. To do this it is necessary to enter X and Y coordinates of 11 points (see Menu "inPt").
The calculations will be done for three different input currents from example 2, so in calculations some of the segments will be used only.

Let the following points will be given:
X1 = "00.0.", Y1 = "-50.0",
X2= "10.0.", Y2 = "-30.0",
....
X6 = "30.0.", Y6 = "30.0",
X7 = "40.0.", Y7 = "80.0",
X10 = "90.0.", Y10 = "900.0",
X11 = "100.0.", Y11 = "820.0",
Additionally all other points must to be defined and stored in the device memory.
a) $I_{\text {in }}=10 \mathrm{~mA}$ and $I_{n}=0,375$

The segment defined by $X 6=$ "30.0." and $X 7=$ "40.0." for this I_{n} will be selected. Accordingly to expressions given for user defined characteristic (see page 43) $\mathrm{X} 6(\mathrm{PL})=30, \mathrm{Y} 6(\mathrm{PL})=30$, $X 7(P H)=40, Y 7(P H)=80$ and $I_{p}=0,3$, the displayed value :

$$
\begin{aligned}
W= & \left(I_{n}-I_{p}\right) \times \frac{[Y(P H)-Y(P L)]}{[X(P H)-X(P L)]} \times 100+Y(P L)= \\
& =(0,375-0,3) \times \frac{[80-30]}{[40-30]} \times 100+30 \simeq 67
\end{aligned}
$$

b) $I_{\text {in }}=2,5 \mathrm{~mA}$ and $I_{n}=-0,0938$, because of the normalized I_{n} value is lower than 0 , the segment defined by X 1 and X 2 will be selected. $\mathrm{X} 1(\mathrm{PL})=0, \mathrm{Y} 1(\mathrm{PL})=-50, \mathrm{X} 2(\mathrm{PH})=10$, $Y 2(P H)=-30$ and $I_{p}=0$. For these values the displayed value $W \cong-69$.
c) $I_{\text {in }}=20,5 \mathrm{~mA}$ and $I_{n}=1,0313$., because of the normalized I_{n} value is higher than 1 , the segment defined by X10 and X11 will be selected, and $\mathrm{X} 10(\mathrm{PL})=90, \mathrm{Y} 10(\mathrm{PL})=900$, $X 11(P H)=100, Y 11(P H)=820$ and $I_{p}=0,9$ for these values the displayed value $W \cong 795$.

Example 7: Current output value calculation

Lets assume that we have active current output and its parameters are:
$" m o d E "=" 4-20 ", \quad " O U t L "=100, \quad " O U t H "=200, \quad " L o r "=5.0, \quad " H i r "=5.0$
Parameters "Lo r" and "Hi r" define working range of current output to $3.8 \div 21 \mathrm{~mA}$.
Output current will be calculated for three displayed values "D":
a) $D=, 17.5 "$

According to formula from page 34:

$$
\mathrm{I}_{\text {out }}=(17.5-10.0) /(20.0-10.0) \times 16 \mathrm{~mA}+4 \mathrm{~mA}=0.75 \cdot 16+4=16 \mathrm{~mA}
$$

Calculated $\mathrm{I}_{\text {out }}$ do not exceeds the output working range (3.8-21 mA).
b) $\mathrm{D}=$, $20.5 "$

According to formula from page 34:

$$
I_{\text {out }}=(20.5-10.0) /(20.0-10.0) \times 16 \mathrm{~mA}+4 \mathrm{~mA}=1.05 \cdot 16+4=20.08 \mathrm{~mA}
$$

Calculated $\mathrm{I}_{\text {out }}$ do not exceeds the output working range ($3.8-21 \mathrm{~mA}$).
c) $\mathrm{D}={ }_{\text {, }} 00.0 "$

According to formula from page 34:

$$
I_{\text {out }}=(30.0-10.0) /(20.0-10.0) \times 16 \mathrm{~mA}+4 \mathrm{~mA}=2 \cdot 16+4=36 \mathrm{~mA} \text {. }
$$

Calculated lout exceeds the output working range ($3-21 \mathrm{~mA}$), so current output will generate current equal to the upper border of range defined by parameter "Lo r" and "Hi r" (it means 21 mA).

10. THE MODBUS PROTOCOL HANDLING

Transmission parameters: 1 start bit, 8 data bits, 1 or 2 stop bit (2 bits are send, 1 and 2 bits are accepted when receive), no parity control
Baud rate:
Transmission protocol: selectable from: 1200 to 115200 bits/second MODBUS RTU compatible

The device parameters and display value are available via RS-485 interface, as HOLDINGtype registers (numeric values are given in U2 code) of Modbus RTU protocol. The registers (or groups of the registers) can be read by 03h function, and wrote by 06h (single registers) or 10h (group of the registers) accordingly to Modbus RTU specification. Maximum group size for 03 h and 10h functions can not exceeds 16 registers (for single frame).
(1) The device interprets the broadcast messages, but then do not sends the answers.

10.1. LIST OF REGISTERS

Register	Write	Range	Register description
01h	No	-999 $\div 9999$	Measurement value (no decimal point)
02h	No	Oh, A0h, 60h, COh, 10h, 20h	The status of the current measurement; $\mathbf{O h}$ - data valid; A0h - top border of the measurement range is exceeded; $\mathbf{6 0 h}$-bottom border of the measurement range is exceeded; COh - sensor failure; 10h error of user characteristic; $\mathbf{2 0 h}$ - waiting for the first measure
03h	Yes	$0 \div 3$	"Pnt" parameter in "InPt" menu (decimal point position) $0 \text {-" 0"; } 1 \text { - " 0.0"; } 2 \text { - " 0.00"; } 3 \text {-" } 0.000 \text { " }$
$04 h^{6}$	Yes	see descr.	State of the relays and alarm LED (binary format) (1 - on, 0 - off): 00000000 000edcba a - relay R1; b-relay R2; c - relay R3; d - relay R2; e - alarm LED; If written, only $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ bits are important (others are ignored) these bits allows user to control the relays via RS-485 interface
$05 h^{1}$	Yes	Oh $\div 1800 \mathrm{~h}$	State of current output, expressed in $1 / 256 \mathrm{~mA}$ units - it means that high byte express integer part, and low byte fractional part of desired output current.
06h	No	-999 $\div 9999$	Peak (drop) value (no decimal point)
08h	No	$0 \div 50$	Temperature inside device housing expressed by $1^{\circ} \mathrm{C}$
10h	Yes	$0 \div 20$	"tyPE" parameter in "InPt" menu (nominal input range): 0-0-20 mA range; 1-4-20 mA range; 2-0-5 V range; 3-1-5 V range; 4-0-10 V range; 5-2-10 V range; $6-0-60 \mathrm{mV}$ range; 7-0-75 mV range; $8-0-100 \mathrm{mV}$ range; 9-0-150 mV range; 10 - Pt-100; 11 - Pt-500; 12 - Pt-1000 13 - thermocouple input K; 14 - thermocouple input S ; 15 - thermocouple input J ; 16 - thermocouple input T; 17 - thermocouple input N ; 18 - thermocouple input R ; 19 - thermocouple input B; 20 - thermocouple input E ;
11h	Yes	$0 \div 3$	"CHAr" parameter in "InPt" menu (characteristic type) 0-linear; 1-square; $\mathbf{2 - s q u a r e ~ r o o t ; ~} \mathbf{3}$ - user defined
12h	Yes	$0 \div 255$	"FiLt" parameter in "InPt" menu (time constant in seconds)

Register	Write	Range	Register description
13h	Yes	$0 \div 3$	"Pnt "parameter in "InPt" menu (the copy of 03h register, decimal point position): 0 - " 0"; $\mathbf{1}$ - " 0.0"; 2 - " 0.00"; 3 - "0.000"
14h	Yes	-999 $~ 99999$	"Lo C" parameter in "InPt" menu, no decimal point included
15h	Yes	-999 $\div 9999$	"Hi C" parameter in "InPt" menu, no decimal point included
16h	Yes	$0 \div 999$	"Lo r" parameter in "InPt" menu, in 0.1\%
17h	Yes	$0 \div 199$	"Hi r" parameter in "InPt" menu, in 0.1\%
18h	Yes	$-99 \div 99$	"toFS" parameter in "InPt" menu (shift of measurement scale), expressed by $0.1^{\circ} \mathrm{C}$ (for RTD input) or by $1.0^{\circ} \mathrm{C}$ (for TC input)
19h	Yes	$0 \div 2$	"Conn" parameter in "InPt" menu (RTD input connection method): 0 - "4 in"; 1 -"3 in"; 2 - " $\mathbf{i n "}$
$20{ }^{2}$	Yes	$0 \div 199$	Device address
21h	No	21DDh	Device identification code (ID)
$22 h^{3}$	Yes	$0 \div 7$	"bAud" parameter in "rS" menu (baud rate); 0-1200 baud; 1-2400 baud; 2-4800 baud; 3-9600 baud; 4-19200 baud; 5-38400 baud; 6-57600 baud; 7-115200 baud
$23 h^{4}$	Yes	$0 \div 1$	"mbAc" parameter in "rS" menu (permission to write registers via RS-485 interface); $\mathbf{0}$ - write denied ; $\mathbf{1}$ - write allowed
24h	Yes	see descr.	Parameters of "SECU" menu (binary format (0-„oFF", 1 - „on"): bit 0 - "A r1" parameter; bit 1 - "A r2" parameter bit 2 - "A r3" parameter; bit 3 - "A r4" parameter
25h	Yes	$0 \div 5$	"rESP" parameter in "rS" menu (additional response delay); 0 - no additional delay; 1 - "10c" option; 2 - "20c" option; 3-"50c" option; 4 - "100c" option; 5 - "200c" option;
27h	Yes	$0 \div 99$	"mbtO" parameter in "rS" menu (maximum delay between received frames); 0-no delay checking; $1 \div 99$ - maximum delay expressed in seconds
28h	Yes	$0 \div 1$	"AL" parameter in "bEEP" menu: 0-off; $\mathbf{1}$ - on
$29 h^{6}$	Yes	$0 \div 1$	"R1" parameter in "bEEP" menu: $\mathbf{0}$ - off; $\mathbf{1 - o n}$
$2 \mathrm{Ah}{ }^{6}$	Yes	$0 \div 1$	"R2" parameter in "bEEP" menu: $\mathbf{0}$ - off; $\mathbf{1 - o n}$
$2 \mathrm{Bh}^{6}$	Yes	$0 \div 1$	"R3" parameter in "bEEP" menu: 0-off; $\mathbf{1}$ - on
$2 \mathrm{Ch}^{6}$	Yes	$0 \div 1$	"R4" parameter in "bEEP" menu: $\mathbf{0}$ - off; $\mathbf{1 - o n}$
2Dh	Yes	$1 \div 8$	"bri" parameter (display brightness); 1 - the lowest brightness; 8 - the highest brightness
2Fh	Yes	$0 \div 1$	"Edit" parameter (numerical parameters edit mode); 0-„dig" mode; 1-„SLid" mode
$30{ }^{6}$	Yes	-999 $~ 99999$	"SEtP" parameter in "rEL1" menu, no decimal point included
$31{ }^{6}$	Yes	-999 $\div 999$	"HySt" parameter in "rEL1" menu, no decimal point included
$32 h^{6}$	Yes	$0 \div 5$	"modE" parameter in "rEL1" menu: 0 - "noAC" mode; 1 - "on" mode; 2 - "oFF" mode; $\mathbf{3}$ - "in" mode; 4 - "out" mode; 5 - "modb" mode

Register	Write	Range	Register description
$33 h^{6}$	Yes	$0 \div 999$	"t on" parameter in "rEL1" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 35h)
$34{ }^{6}$	Yes	$0 \div 999$	"toFF" parameter in "rEL1" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 35h)
$35 h^{6}$	Yes	$0 \div 1$	"unit" parameter in "rEL1" menu: 0 - seconds; 1 - minutes
$36 h^{6}$	Yes	$0 \div 2$	"AL" parameter in "rEL1" menu: $\mathbf{0}$ - no changes; $\mathbf{1}$ - on; $\mathbf{2}$ - off
$37{ }^{6}$	Yes	-999 -9999	"SEt2" parameter in "rEL1" menu, no decimal point included
$38{ }^{6}$	Yes	$-999 \div 9999$	"SEtP" parameter in "rEL2" menu, no decimal point included
$39{ }^{6}$	Yes	-999 $\div 999$	"HySt" parameter in "rEL2" menu, no decimal point included
$3 A^{6}$	Yes	$0 \div 5$	"modE" parameter in "rEL2" menu: 0 - "noAC" mode; 1 - "on" mode; 2 - "oFF" mode; 3 - "in" mode; 4 - "out" mode; 5 - "modb" mode
$3 B^{6}$	Yes	$0 \div 999$	"t on" parameter in "rEL2" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 3Dh)
$3 \mathrm{Ch}^{6}$	Yes	$0 \div 999$	"toFF" parameter in "rEL2" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 3Dh)
3Dh ${ }^{6}$	Yes	$0 \div 1$	"unit" parameter in "rEL2" menu: 0 - seconds; 1 - minutes
$3 E h^{6}$	Yes	$0 \div 2$	"AL" parameter in "rEL2" menu: $\mathbf{0}$ - no changes; $\mathbf{1}$ - on; $\mathbf{2}$ - off
$3 \mathrm{Fh}^{6}$	Yes	-999 $\div 9999$	"SEt2" parameter in "rEL2" menu, no decimal point included
$40{ }^{6}$	Yes	-999 $\div 9999$	"SEtP" parameter in "rEL3" menu, no decimal point included
$41 \mathrm{~h}^{6}$	Yes	-999 $\div 999$	"HySt" parameter in "rEL3" menu, no decimal point included
$42 h^{6}$	Yes	$0 \div 5$	"modE" parameter in "rEL3" menu: 0 - "noAC" mode; 1 - "on" mode; 2 - "oFF" mode; 3 - "in" mode; 4 - "out" mode; 5 - "modb" mode
$43 h^{6}$	Yes	$0 \div 999$	"t on" parameter in "rEL3" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 45h)
$44{ }^{6}$	Yes	$0 \div 999$	"toFF" parameter in "rEL3" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 45h)
$45 h^{6}$	Yes	$0 \div 1$	"unit" parameter in "rEL3" menu: 0 - seconds; 1 - minutes
$46 h^{6}$	Yes	$0 \div 2$	"AL" parameter in "rEL3" menu: $\mathbf{0}$ - no changes; $\mathbf{1 - o n ;} \mathbf{2 - o f f}$
$47 \mathrm{~h}^{6}$	Yes	-999 $\div 9999$	"SEt2" parameter in "rEL3" menu, no decimal point included
$48{ }^{6}$	Yes	$-999 \div 9999$	"SEtP" parameter in "rEL4" menu, no decimal point included
$49{ }^{6}$	Yes	-999 $\div 999$	"HySt" parameter in "rEL4" menu, no decimal point included
4Ah ${ }^{6}$	Yes	$0 \div 5$	"modE" parameter in "rEL4" menu: 0 - "noAC" mode; 1 - "on" mode; 2 - "oFF" mode; $\mathbf{3}$ - "in" mode; 4 - "out" mode; 5 - "modb" mode
4Bh ${ }^{6}$	Yes	$0 \div 999$	"t on" parameter in "rEL4" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 4Dh)

Register	Write	Range	Register description
$4 \mathrm{Ch}^{6}$	Yes	$0 \div 999$	"toFF" parameter in "rEL4" menu, expressed in tenth of seconds or tenth of minutes depend on "unit" parameter - register no. 4Dh)
4Dh ${ }^{6}$	Yes	$0 \div 1$	"unit" parameter in "rEL4" menu: 0 - seconds; 1 - minutes
4Eh ${ }^{6}$	Yes	$0 \div 2$	"AL" parameter in "rEL4" menu: $\mathbf{0}$ - no changes; $\mathbf{1}$ - on; $\mathbf{2}$ - off
4Fh ${ }^{6}$	Yes	-999 $\div 9999$	"SEt2" parameter in "rEL4" menu, no decimal point included
50h	Yes	$0 \div 1$	"modE" parameter in "HOLd" menu (type of detected changes): 0 - peaks; 1 -drops
51h	Yes	$0 \div 9999$	"PEA" parameter in "HOLd" menu (minimum detectable change, no decimal point included)
52h	Yes	$0 \div 199$	"timE" parameter in "HOLd" menu, maximum peaks' (or drops') display time expressed in seconds
53h	Yes	$0 \div 1$	"HdiS" parameter in "HOLd" menu: 0 - "rEAL" mode ; 1 - "HOLd" mode
$54{ }^{6}$	Yes	$0 \div 1$	"H r1" parameter in "HOLd" menu : 0 - "rEAL" mode ; 1 - "HOLd" mode
$55 h^{6}$	Yes	$0 \div 1$	"H r2" parameter in "HOLd" menu: 0 - "rEAL" mode ; 1 - "HOLd" mode
$56 h^{6}$	Yes	$0 \div 1$	"H r3" parameter in "HOLd" menu: 0 - "rEAL" mode ; $\mathbf{1}$ - "HOLd" mode
$57 \mathrm{~h}^{6}$	Yes	$0 \div 1$	"H r4" parameter in "HOLd" menu: 0 - "rEAL" mode ; 1 - "HOLd" mode
$58{ }^{1}$	Yes	$0 \div 1$	"HOUt" parameter in "HOLd" menu: 0 - "rEAL" mode ; 1 - "HOLd" mode
$70{ }^{5}$	Yes	-999 $\div 1999$	The value of „X" coordinate of point no. 1 of the user defined characteristic, expressed in 0.1\%
$71{ }^{5}$	Yes	-999 $\div 9999$	The value of "Y" coordinate of point no. 1 of the user defined characteristic, no decimal point included
$72 h^{5} \div 95 h^{5}$			Further pairs of „X" - „Y" coordinates of points no. $2 \div 19$ of the user defined characteristic
$96 h^{5}$	Yes	-999 $\div 1999$	The value of "X" coordinate of point no. 20 of the user defined characteristic, expressed in 0.1\%
$97 h^{5}$	Yes	-999 $\div 9999$	The value of "Y" coordinate of point no. 20 of the user defined characteristic, no decimal point included
AOh ${ }^{1}$	Yes	$0 \div 3$	"Omod" parameter in "OUtP" menu (current output mode) $\mathbf{0}$ - current output disabled; 1 - current output enabled with $4 \div 20 \mathrm{~mA}$ mode; 2 - current output enabled with $0 \div 20 \mathrm{~mA}$ mode; 3 - current output controlled via RS-485 interface
A1 ${ }^{1}$	Yes	-999 $\div 9999$	"OUtL" parameter in "OUtP" menu, no decimal point included
A2h ${ }^{1}$	Yes	-999 $\div 9999$	"OUtH" parameter in "OUtP" menu, no decimal point included
A3h ${ }^{1}$	Yes	$0 \div 999$	"Lo r" parameter in "OUtP" menu, expressed in 0.1\%
A4h ${ }^{1}$	Yes	$0 \div 199$	"Hi r" parameter in "OUtP" menu, expressed in 0.1\%

Register	Write	Range	Register description
$A^{4} h^{1}$	Yes	$0 \div 3$	"AL" parameter in "OUtP" menu (current output value on critical exception): $\mathbf{0}-$ no change; $\mathbf{1}-22.1 \mathrm{~mA} ; \mathbf{2}-3.4 \mathrm{~mA} ; \mathbf{3}-0 \mathrm{~mA}$

1 - these registers are active only if device is equipped with active current output
2 - after writing to register no 20h the device responds with an "old" address in the message.
3 - after writing to register no 22h the device responds with the new baud rate.
4 - the value of the "mbAc" parameter is also connected to write to this register, so it is possible to block a writes, but impossible to unblock writes via RS-485 interface, The unblocking of the writes is possible from menu level only.
5 - the pairs of "X-Y" coordinates may be defined for any free point. The pair is "free" (it means that particular point is not defined) if " \mathbf{X} " coordinate of this point is equal 8000 h . After writing both X and Y coordinate the point is defined and used in calculation of result. The coordinates of any point can be changed at any time.

- these registers are active only if device is equipped with relay outputs.

10.2. TRANSMISSION ERRORS DESCRIPTION

If an error occurs while write or read of single register, then the device sends an error code according to Modbus RTU specifications (example message no 1).

Error codes:
01h - illegal function (only functions 03h, 06h and 10h are available),
02h - illegal register address
03h - illegal data value
08h - no write permission (see: "mbAc" parameter)
AOh - exceed of upper border of input range
60h - exceed of lower border of input range
A0h and 60h codes can appear only during reg. 01 h is reading by 03 h function (read of a single register).

10.3. EXAMPLES OF QUERY/ANSWER FRAMES

Examples apply for device with address 1 . All values are represent hexadecimal.

Field description:

ADDR	Device address on modbus network
FUNC	Function code
REG H,L	Starting address (address of first register to read/write, Hi and Lo byte)
COUNT H,L	No. of registers to read/write (Hi and Lo byte)
BYTE C	Data byte count in answer frame
DATA H,L	Data byte (Hi and Lo byte)
CRC L,H	CRC error check (Hi and Lo byte)

1. Read of the displayed value (measurement), SUR-W410 device address $=01 \mathrm{~h}$:

ADDR	FUNC	REG H,L		COUNT H,L		CRC L,H	
01	03	00	01	00	01	D5	CA

a) The answer (we assume that the measure result is not out of range):

ADDR	FUNC	BYTE C	DATA H,L		CRC L,H	
01	03	02	00	FF	F8	04

DATA H, L - displayed value $=255$, no decimal point.
Decimal point position can be read from reg. 03h.
b) The answer (if an error occur):

ADDR	FUNC	ERROR	CRC L,H	
01	83	60	41	18

ERROR - error code $=60 \mathrm{~h}$, bottom border of the measurement range is exceeded
2. Read of device ID code

ADDR	FUNC	REG H,L		COUNT H,L		CRC L,H	
01	03	00	21	00	01	D4	00

The answer:

ADDR	FUNC	BYTE C	DATA H,L		CRC L,H	
01	03	02	21	DD	60	$4 D$

DATA - identification code (21DDh)
3. Change of the device address from 1 to 2 (write to reg. 20h)

ADDR	FUNC	REG H,L		DATA H,L		CRC L,H	
01	06	00	20	00	02	09	C1

DATA H - 0
DATA L - new device address (2)
The answer (the same as the message):

ADDR	FUNC	REG H,L		DATA H,L		CRC L,H	
01	06	00	20	00	02	09	C1

4. Change of baud rate of all devices connected to the net (BROADCAST message).

ADDR	FUNC	REG H,L		COUNT H,L		CRC L,H	
00	06	00	22	00	04	29	D2

DATA H-0
DATA L-4, new baud rate 19200 baud

(i)Device do not reply to BROADCAST-type messages.
5. Read of the registers 1,2 and 3 in one message (example of reading a number of registries in one frame):

ADDR	FUNC	REG H,L		COUNT H,L		CRC L,H	
01	03	00	01	00	03	54	$0 B$

COUNT L - the count of being read registers (max.16)
The answer:

ADDR	FUNC	BYTE C	DATA H1,L1		DATA H2,L2		DATA H3,L3		CRC L,H	
01	03	06	00	$0 A$	00	00	00	01	78	B4

DATA H1, L1 - reg. 01h (10-displayed value "1.0"),
DATA H2, L2 - reg. 02h (0 - no errors),
DATA H3, L3 - reg. 03h (1-decimal point position " 0.0").

(i)
There is no full implementation of the Modbus Protocol in the device. The functions presented above are available only.

11. DEFAULT AND USER'S SETTINGS LIST

Parameter	Description	Default value	User's value	Desc. page
Parameters of relay R1 operation ("rEL1" menu)				
SEtP	Relay R1 threshold	20.0		28
SEt2	Relay R1 second threshold	40.0		28
HYSt	Hysteresis of relay R1	0.0		28
modE	Operation mode of relay R1	on		28
t on	Turn on delay of relay R1	0.0		29
toFF	Turn off delay of relay R1	0.0		29
unit	Unit of "t on", "toFF" parameters of relay R1	SEC		29
AL	Reaction for critical situation of relay R1	oFF		29
Parameters of relay R2 operation ("rEL2" menu)				
SEtP	Relay R2 threshold	40.0		28
SEt2	Relay R2 second threshold	60.0		28
HYSt	Hysteresis of relay R2	0.0		28
modE	Operation mode of relay R2	on		28
t on	Turn on delay of relay R2	0.0		29
toFF	Turn off delay of relay R2	0.0		29
unit	Unit of "t on", "toFF" parameters of relay R2	SEC		29
AL	Reaction for critical situation of relay R2	oFF		29
Parameters of relay R3 operation ("rEL3" menu)				
SEtP	Relay R3 threshold	60.0		28
SEt2	Relay R3 second threshold	80.0		28
HYSt	Hysteresis of relay R3	0.0		28
modE	Operation mode of relay R3	on		28
t on	Turn on delay of relay R3	0.0		29
toFF	Turn off delay of relay R3	0.0		29
unit	Unit of "t on", "toFF" parameters of relay R3	SEC		29
AL	Reaction for critical situation of relay R3	oFF		29
Parameters of relay R4 operation ("rEL4" menu)				
SEtP	Relay R4 threshold	80.0		28
SEt2	Relay R4 second threshold	100.0		28
HYSt	Hysteresis of relay R4	0.0		28
modE	Operation mode of relay R4	on		28

Parameter	Description	Default value	User's value	Desc. page
t on	Turn on delay of relay R4	0.0		29
toFF	Turn off delay of relay R4	0.0		29
unit	Unit of "t on", "toFF" parameters of relay R4	SEC		29
AL	Reaction for critical situation of relay R4	oFF		29
Activation of acoustic signal (menu "bEEP")				
AL	Activation of acoustic signal by critical situation	oFF		30
r1	Activation of acoustic signal by relay R1	oFF		30
r2	Activation of acoustic signal by relay R2	oFF		30
r3	Activation of acoustic signal by relay R3	oFF		30
r4	Activation of acoustic signal by relay R4	oFF		30
Configuration of measurement input ("inPt" menu)				
tYPE	Input mode	"4-20"		30
Conn	Connection method	"4-in"		31
FiLt	Filtering time constant (in seconds)	0		31
toFS	Shifting of measurement scale	0.0		31
CHAr	Conversion characteristic mode	Lin		31
Pnt	Decimal point position	0.0		31
Lo C	Minimum displayed value (for nominal range)	000.0		32
Hi C	Maximum displayed value (for nominal range)	100.0		32
Lor	Extension of the bottom of the nominal input range	5.0 (\%)		32
Hir	Extension of the top of the nominal input range	5.0 (\%)		32
Active current output configuration ("OUtP" menu)				
Omod	Active current output mode	„0-20" (mA)		33
OUtL	Display value for 0 mA or 4 mA current output	0.0		34
OUtH	Display value for 20 mA current output	100.0		34
Lor	Extension of the bottom of the nominal output range	5.0 (\%)		34
Hir	Extension of the top of the nominal output range	5.0 (\%)		34
AL	Current output value on critical exception	22.1 (mA)		35
Passive current output configuration ("OUtP" menu)				
Omod	Passive current output mode	„4-20" (mA)		33
OUtL	Display value for 4 mA current output	0.0		34
OUtH	Display value for 20 mA current output	100.0		34
Lor	Extension of the bottom of the nominal output range	5.0 (\%)		34

Parameter	Description	Default value	User's value	Desc. page
Hir	Extension of the top of the nominal output range	5.0 (\%)		34
AL	Current output value on critical exception	22.1 (mA)		35
Active voltage output configuration ("OUtP" menu)				
Omod	Active voltage output mode	„0-10" (V)		33
OUtL	Display value for $0 \mathrm{~V}, 1 \mathrm{~V}$ or 2 V voltage output	0.0		34
OUtH	Display value for 5 V or 10 V voltage output	100.0		34
Lor	Extension of the bottom of the nominal output range	5.0 (\%)		34
Hi r	Extension of the top of the nominal output range	5.0 (\%)		34
AL	Voltage output value on critical exception	11.0 (V)		35
Display parameters				
bri	Display brightness	bri6		35
Configuration of peaks detection function ("HOLd" menu)				
modE	Kind of detected changes	norm		35
PEA	Minimum detected change	0.0		35
timE	Maximum time of peak displaying	0.0		35
HdiS	The type of displayed value	HOLd		36
H r1	Source of relay R1, and LED R1 control	rEAL		36
H r2	Source of relay R2, and LED R2 control	rEAL		36
H r3	Source of relay R3, and LED R3 control	rEAL		36
H r4	Source of relay R4, and LED R4 control	rEAL		36
HOUt	Source of current output control	rEAL		36
Settings of access to the configuration parameters ("SECu" menu)				
A r1	Permission to changes of relay R1 threshold without of the user password knowledge	on		36
A r2	Permission to changes of relay R2 threshold without of the user password knowledge	on		36
A r3	Permission to changes of relay R3 threshold without of the user password knowledge	on		36
A r4	Permission to changes of relay R4 threshold without of the user password knowledge	on		36
RS-485 interface configuration (menu "rS")				
Addr	Device address	0		36
bAud	Baud rate	9.6		36
mbAc	Permission to changes of configuration registers	on		37
mbtO	Maximum delay between received messages	0		37

Parameter	Description	Default value	User's value	Desc. page
rESP	Additional delay of answer transmission	Std		37
Configuration of numerical parameters edition				
Edit	Numerical parameters edit mode	dig		37

SIMEX Sp. z o.o.
ul. Wielopole 11
80-556 Gdańsk Poland
tel.: (+48 58) 762-07-77
fax: (+48 58) 762-07-70
http://www.simex.pl e-mail: info@simex.pl

[^0]: "Lo r", "Hi r" - these parameters define the expansion of nominal range in percent. They determine the permissible range of input signal (Figure 7.1).

[^1]: "Addr" - this parameter defines the address of the device, accordingly to Modbus protocol. It can be set in range from 0 to 199. If the value 0 is set then device, responds to frames with address 255 (FFh),
 "bAud" - this parameter determines RS-485 interface baud rate. It can be set to one of 8

